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Abstract

The Gypsy verification environment is a large computer program that supports the development of software
systems and formal, mathematical proofs about their behavior. The environment provides conventional
development tools, such as a parser for the Gypsy language, an editor and a compiler. These are used to evolve
a library of components that define both the software and precise specifications about its desired behavior. The
environment also has a verification condition generator that automatically transforms a software component and
its specification into logical formulas which are sufficient to prove that the component always runs according to
specification. Facilities for constructing formal, mechanical proofs of these formulas also are provided. Many
of these proofs are completed automatically without human intervention. The capabilities of the Gypsy system
and the results of its applications are discussed.
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1. Introduction

One of the major problems with the current practice of software engineering is an absence of predictability.
There is no sound, scientific way of predicting accurately how a software system will behave when it runs.
There are many compelling examples of important software systems that have behaved in unpredictable ways.
A space shuttle fails to launch. An entire line of automobiles is recalled because of problems with the software
that controls the braking system. Unauthorized users get access to computer systems. Sensitive information
passes into the wrong hands. The list goes on and on [Neumann 83a, Neumann 83b]. Considering the wide
variety of tasks that now are entrusted to computer systems, it is truly remarkable that it is not possible to
predict accurately what they are going to do!

Within current software engineering practice, the only sound way to make a precise, accurate prediction
about how a software system will behave is to build it and run it. There is no way to predict accurately how a
system will behave before it can be run. Thus, design flaws often are detected only after a large investment has
been made to develop the system to a point where it can be run. The rebuilding that is caused by the late
detection of these flaws contributes significantly to the high cost of software construction and maintenance.
Even after the system can be run, the situation is only slightly better. A system that can be run can be tested on
a set of trial cases. If the system is deterministic, a trial run on a specific test case provides a precise, accurate
prediction about how the system will behave in that one case. If the system is rerun on the exact same case, it
will behave in the exact same way. However, there is no way to predict, from the observed behavior of a finite
number of test cases, how the system will behave in any other case. If the system is non-deterministic (as many
systems are), the system will not even necessarily repeat its observed behavior on a test case. Thus, in current
software engineering practice, predicting that a software system will run according to specification is based
almost entirely on subjective, human judgment rather than on objective, scientific fact.

In contrast to software engineering, mathematical logic provides a sound, objective way to make accurate,
precise predictions about the behavior of mathematical operations. For example, if x and y are natural
numbers, who among us would doubt the prediction that x+y always gives exactly the same result as y+x?
This prediction is accurate not just for some cases, or even just for most cases. It is accurate for every pair of
natural numbers, no matter what they are. The prediction is accurate because there is a proof that x+y=y+x
logically follows from accepted definitions of "natural number", "=" and "+."

The Gypsy verification environment is a large, interactive computer program that supports the construction
of formal, mathematical proofs about the behavior of software systems. These proofs make it possible to
predict the behavior of a software system with the same degree of precision and accuracy that is possible for
mathematical operations. These proofs can be constructed before a software system can be run; and therefore,
they can provide an objective, scientific basis for making predictions about system behavior throughout the
software life cycle. This makes it possible for the proofs actually to guide the construction of the system. In
theory, these proof methods make possible a new approach to software engineering that can produce systems
whose predictability far exceeds that which can be attained with conventional methods.

In practice, using this mathematical approach to software engineering requires very careful management of
large amounts of detailed information. The Gypsy environment is an experimental system that has been
developed to explore the viability of applying these methods in actual practice. The purposes of the
environment are to amplify the ability of the human software engineer to manage these details and to reduce the
probability of human error. The environment, therefore, contains tools for supporting the normal software
development process as well as tools for constructing formal proofs.
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2. A Mathematical Approach

The Gypsy verification environment is based on the Gypsy language [Good 78]. Rather than being based on
an extension of the hardware architecture of some particular computer, the Gypsy language is based on
rigorous, mathematical foundations for specifying and implementing computer programs. The specification
describes what effect is desired when the program runs, and the implementation defines how the effect is
caused. The mathematical foundation provided by the Gypsy language makes it possible to construct rigorous
proofs about both the specifications and the implementations of software systems. The language, which is
modeled after Pascal [Jensen 74], also is designed so that the implementations of programs can be compiled and
executed on a computer with a conventional von Neumann architecture.

The basic structure of a Gypsy software system is shown in Figure 1. The purpose of a software system is
to cause some effect on its external environment. The external environment of a Gypsy software system
consists of data objects (and exception conditions). Every Gypsy data object has a name and a value. The
implementation of a program causes an effect by changing the values of the data objects in its external
environment (or by signalling a condition). To accomplish its effect, an implementation may create and use
internal (local) data objects (and conditions). In Figure 1, X and Y represent external objects, and U represents
an internal object.

Figure 1: Gypsy Software System Structure

X Y
| --------------------------------------------------------- ^
| | | |
| | E X T E R N A L | |
|->| S P E C I F I C A T I O N |<-|
| | | |
| --------------------------------------------------------- |
| --------------------------------------------------------- |
| | | |
-->|-- I M P L E M E N T A T I O N --|---

| | | |
--X----------------------U-----U----------------------Y--
| ^ | ^
| ------------------ | | ------------------ |
| | EXTERNAL | | | | EXTERNAL | |
|->| SPECIFICATION |<-| |->| SPECIFICATION |<-|
| ------------------ | | ------------------ |
| ------------------ | | ------------------ |
-->| |--- -->| |---

------------------ ------------------

The specifications of a program define constraints on its implementation. In parallel with the structure of
implementations, Gypsy provides a means of stating both internal and external specifications. The external
specifications constrain the externally visible effects of an implementation. Internal specifications constrain its
internal behavior.

The external specifications of a program consist of two parts, a (mandatory) environment specification and
an (optional) operational specification. The environment specification describes all of the external data objects
that are accessible to the procedure. The specification also states the type of each of these objects and whether
it is a variable or a constant object. A program may change the value of a data object only if it is a variable
object.
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The type of an object specifies the kind of values it may have. The mathematical foundations of Gypsy
begin with its types. The Gypsy types are all well known mathematical objects (integers, rational numbers, the
boolean values true and false, sets, sequences, mappings) or they can be easily derived from such objects
(types character, record, array, buffer). For example, in Gypsy, type integer represents the full, unbounded
set of mathematical objects. It is not restricted only to the integers that can be represented on a particular
machine. For each of these pre-defined types, the Gypsy language also provides a set of primitive, pre-defined
functions with known (and provable) mathematical properties.

The operational specification for an implementation is a relation (a boolean-valued function) that describes
what effect is to be caused on the objects of the external environment. These relations are defined by ordinary
functional composition from the Gypsy pre-defined functions.

The implementation of a Gypsy program is defined by a procedure. Running a Gypsy procedure is what
actually causes an effect to be produced in its external environment. For implementation, the Gypsy language
provides a set of pre-defined procedures (assign a value to an object, send a value to a buffer, remove an object
from a sequence, ...) that have precisely defined effects. It also provides a set of composition rules
(if...then...else...end, loop...end, cobegin...end,...) for composing these pre-defined
procedures into more complex ones. Thus, the implementation of every Gypsy software system is some
composition of the pre-defined procedures.

These composition rules are designed so that the effect that is caused by the composition can be deduced
from the effects caused by its components. In particular, it is always possible to construct a set of formulas in
the first order predicate calculus which are sufficient (but not always necessary) to show that the effect caused
by a procedure satisfies its specifications. These formulas are called verification conditions. They are the
logical conditions which are sufficient to verify that the implementation meets its specifications. By
constructing them, the task of proving that an implementation always causes an effect that satisfies its
specifications is reduced to a task of proving a set of formulas in the first order predicate calculus. The methods
for constructing the verification conditions are based on the pioneering work of [Naur 66, Floyd 67, Dijkstra
68, Hoare 69, King 69, Good 70]. [Dijkstra 76, Jones 80, Gries 81, Hoare 82] provide more recent discussions
of these basic ideas and their relation to software development.

One of the most important aspects of the Gypsy composition rules is illustrated in Figure 1. Only the
external specifications of the components are required to construct the verification conditions for the
composition. Neither the internal specifications nor the implementation of the components are required. The
proof of the composition is completely independent of the internal operation of the components. Therefore, the
proof of the composition can be done before the components are proved or even implemented. All that is
required is that the components have external specifications. Because of this characteristic of the proof
methods, a software system can be specified, implemented and proved by starting at the top and working
downward rather than by building upward from the Gypsy pre-defined functions and procedures. Thus, when
working from the top down, the proofs provide an sound, scientific basis for predicting how the system will
behave, even long before it can be run. It is in these high levels of system design where proofs often can be
most effective.
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3. The Gypsy Environment

The Gypsy verification environment is an interactive program that supports a software engineer in
specifying, implementing and proving Gypsy software systems. The specific goals of the environment are to
increase the productivity of the software engineer and to reduce the probability of human error. To meet these
goals, the Gypsy environment provides an integrated collection of conventional software development tools
along with special tools for constructing formal, mathematical proofs. Figure 2 shows the logical structure of
the environment.

Figure 2: Gypsy Environment Components

------- ------------------ ------------
| |-----| Text Editor |-----| |
| E | ------------------ | |
| |-----| Parser |-----| S |
| X | ------------------ | L |
| |-----| Pretty Printer |-----| O |
| E | ------------------ | I |
| |-----| VC Generator |-----| F |
| C | ------------------ | B |

-------- | |-----| Simplifier |-----| T |
| USER |-----| U | ------------------ | R |
-------- | |-----| Proof Checker |-----| W |

| T | ------------------ | A |
| |-----| Optimizer |-----| A |
| I | ------------------ | R |
| |-----| Interpreter |-----| R |
| V | ------------------ | Y |
| |-----| Compiler |-----| E |
| E | ------------------ | |
| |-----| Ada Translator |-----| |
------- ------------------ ------------

A single user interacts with the executive component of the environment to use a number of different
software tools to build and evolve a software library. This library contains the various Gypsy components of
the specification and implementation of a software system, as well as other supporting information such as
verification conditions and proofs. The executive notes the changes that are made as the library evolves and
marks components that need to be reconsidered in order to preserve the validity of the proofs [Moriconi 77].

The Emacs text editor [Stallman 80], parser and pretty printer are conventional tools for creating and
modifying Gypsy text. The parser transforms Gypsy text into an internal form for storage in the library. The
pretty printer transforms the internal form back into parsable Gypsy text. The interpreter, compiler [Smith 80]
and Ada translator [Akers 83] also are fairly conventional tools for running Gypsy programs. Although the
interpreter would be a very useful debugging tool, it is not well developed and it is not presently available.

The tools that are involved in constructing proofs are the verification condition generator, the algebraic
simplifier, the interactive proof checker and the optimizer. The verification condition generator automatically
constructs verification conditions from the Gypsy text of a program. The algebraic simplifier automatically
applies an ad hoc set of rewrite rules that reduce the complexity of the verification conditions and other logical
formulas produced within the Gypsy environment. These rewrite rules are based on equality (and other)
relations that are implied by the definitions of the Gypsy pre-defined functions. The interactive proof checker
has evolved from one described by [Bledsoe 74]. It provides a set of truth preserving transformations that can
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be performed on first order predicate calculus formulas. These transformations are selected interactively.

The optimizer [McHugh 83] is unique to the Gypsy environment. It produces logical formulas whose truth
is sufficient to show that certain program optimizations are valid. The optimizer works in a manner similar to
the verification condition generator. From the implementation of a program and its specifications, logical
formulas called optimization conditions are constructed automatically. These conditions are proved, and then
the compiler uses this knowledge to make various optimizations.

4. An Example

To illustrate the capabilities of the Gypsy language and environment, consider the design of a simple
software system that filters a stream of messages. Two computers, A and B, are to be coupled by a transmission
line so that A can send messages to B. These messages are strings of ASCII characters arranged in a certain
format. However, certain kinds of these messages, even when properly formatted, cause machine B to crash.
To solve this problem, a separate micro computer is to be installed between A and B as shown in Figure 3. The
micro is to monitor the flow of messages from A to B, remove the undesirable messages and log them on an
audit trail.

Figure 3: Micro Filter

-------------- --------- --------------
| Computer A |--x->| Micro |--y->| Computer B |
-------------- --------- --------------

|
z

4.1 Top Level Specification

The micro filter will be developed from the top down. The process begins by defining an abstract
specification of its desired behavior. The Gypsy text for this top level specification is shown in Figure 4. When
using the Gypsy environment, the first step would be to create this text and store it in the software library.

The Gypsy text defines a scope called message_stream_separator that contains six Gypsy units,
procedure separator, functions msg_stream and separated and types a_char_seq, a_msg and
a_msg_seq. (A Gypsy scope is just a name that identifies a particular collection of Gypsy units. The Gypsy
units are procedures, functions, constants, lemmas and types. All Gypsy programs are implemented and
specified in terms of these five kinds of units.)

Procedure separator is the program that will filter the messages going from computer A to B. The
external environment specification of separator is (x:a_char_seq; var y, z:a_char_seq). It
states that separator has access to exactly three external data objects, x, y and z as illustrated in Figure 3.
The object x is a constant, and y and z are variables. Each of the objects has a value that is a sequence of
ASCII characters.

The operational specification is exit separated(msg_stream(x),y,z). This defines a relation
among x, y, and z that must be satisfied whenever separator halts (exits). The messages that arrive from
computer A are supposed to be in a given format. However, there is no way to force A to deliver them
properly, and, even if it does, there is the possibility of noise on the transmission line. Therefore, separator
must designed to extract properly formatted messages from an arbitrary sequence of characters.
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Figure 4: Micro Filter Top Level Specification

-------------------------------------------------------------------
| |
| scope message_stream_separator = |
| begin |
| |
| procedure separator(x:a_char_seq; var y, z:a_char_seq) = |
| begin |
| exit separated(msg_stream(x), y, z); |
| pending; |
| end; |
| |
| function msg_stream(x:a_char_seq):a_msg_seq = pending; |
| |
| function separated(s:a_msg_seq; y, z:a_char_seq):boolean = |
| pending; |
| |
| type a_char_seq = sequence of character; |
| type a_msg = a_char_seq; |
| type a_msg_seq = sequence of a_msg; |
| |
| end; |
| |
-------------------------------------------------------------------

Msg_stream(x) is the function that applies the formatting rules and determines the sequence of properly
formatted messages that are contained in an arbitrary sequence of characters. Separated(s,y,z) defines
what it means for a sequence of messages s to be separated into two character strings y and z.

This top level specification does not give precise definitions for msg_stream and separated. Only
environment specifications for them are given. (The environment specifications for functions are interpreted in
the same way as for procedures except that the additional type name immediately preceding the "=" identifies
the type of value produced by the function.) The precise definitions of msg_stream and separated, as
well as the implementation of separator, are left pending at this stage of development. At this stage, the
interface between separator and its external environment has been defined, and it has been acknowledged
that separator must be prepared to deal with an input sequence that may contain improperly formed
messages. Formulating precise definitions for the pending items will be deferred to a later stage.

4.2 Specification Refinement

The next stage is to refine the operational specifications of separator. Figure 5 shows the actual Gypsy
text that would be entered into the software library. This text extends scope
message_stream_separator by replacing the old version of separated by the new one and by
defining some new functions, types and lemmas.

In this refinement, the separated specification is given a precise definition in terms of two new functions
passed and rejected. The definition is given by the operational specification of separated. Result
is the Gypsy convention for the name of the value returned by a function, and the specification states that
result is to be true if and only if y=passed(s) and z=rejected(s). The keyword assume indicates
that this specification is to be assumed without proof. This is the normal Gypsy style for defining a function
that is to be used just for specification.
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Figure 5: Micro Filter Specification Refinement

-------------------------------------------------------------------
| |
| $extending |
| scope message_stream_separator = |
| begin |
| |
| function separated(s:a_msg_seq; y, z:a_char_seq):boolean = |
| begin |
| exit [assume result iff y = passed(s) & z = rejected(s)]; |
| end; |
| |
| function passed(s:a_msg_seq):a_char_seq = |
| begin |
| exit [assume result = |
| if s = null(a_msg_seq) then null(a_char_seq) |
| else passed(nonlast(s)) @ image(last(s)).pass fi]; |
| end; |
| |
| function rejected(s:a_msg_seq):a_char_seq = |
| begin |
| exit [assume result = |
| if s = null(a_msg_seq) then null(a_char_seq) |
| else rejected(nonlast(s)) @ image(last(s)).reject fi]; |
| end; |
| |
| function image(m:a_msg):an_image = pending; |
| |
| type an_image = record(pass, reject:a_char_seq); |
| |
| lemma null_separation = |
| separated(null(a_msg_seq), null(a_char_seq), |
| null(a_char_seq)); |
| |
| lemma extend_separation(s:a_msg_seq; m:a_msg; |
| y, z:a_char_seq) = |
| separated(s, y, z) |
| -> separated(s @ [seq: m], y @ image(m).pass, |
| z @ image(m).reject); |
| |
| lemma null_stream = |
| msg_stream(null(a_char_seq)) = null(a_msg_seq); |
| |
| end; |
| |
-------------------------------------------------------------------

Functions passed and rejected are defined in terms of pre-defined Gypsy functions and the function
image. Last is a pre-defined function that gives the last element of a non-empty sequence, and nonlast
gives all the other elements. The operator "@" denotes a pre-defined function that appends two sequences.

Image is a function that takes a message and produces a record of two parts, pass and reject. At a
subsequent development stage, the definition of image will be refined to include the criterion for identifying a
message that causes computer B to crash. Image also will define the actual output that is sent to computer B
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and to the audit trail for each message. If the message is of the form that will cause B to crash, the pass part
of the record will contain a null sequence of characters and the reject part will contain the offending message
and any other appropriate information. This record form for the result of image was chosen so that messages
that are forwarded to B also can be audited if desired. This can be done by sending characters to both the pass
and reject parts of the record. This design choice retains a large amount of flexibility for the subsequent
design of the audit trail. The function passed applies the image function to each successive message m and
appends the pass part of image(m) to y. Similarly, rejected applies image to each m and appends the
reject part to z.

4.3 Specification Proof

The Gypsy text for the specification refinement also contains three lemmas. These are properties that can be
proved to follow from the preceding definitions. These lemmas are the beginning of a simple problem domain
theory of separating messages. The lemmas (theorems) of this theory serve several important purposes. First,
to the extent that they are properties that the software designer intuitively believes should follow from the
assumed definitions, proving that they do follow provides confidence in these assumptions. Second, these
properties are the basis for the implementation in the next stage. They are used in the proof of the
implementation to decompose the proof into manageable parts. Third, to the extent that the lemmas in this
theory are reusable, they can significantly reduce the cost of other proofs that are based on the same
theory [Good 82a].

The null_separation lemma is a rather trivial one that states that if a sequence of messages s is
empty, then separated(s,y,z) is satisfied if y and z also are empty. Lemma extend_separation
describes how to extend the separated relation to cover one more message m. If separated(s,y,z) is
satisfied, then so is separated(s@[seq:m], y@image(m).pass, z@image(m).reject).

A formal proof of both of these lemmas can be constructed with the assistance of the interactive proof
checker in the Gypsy verification environment. The proof checker provides a fixed set of truth preserving
transformations that can be performed on a logical formula. Although the proof checker has some very limited
capability to make transformations without user direction, the primary means of constructing a proof is for the
user to select each transformation. Expanding the definition of a function is one kind of transformation that can
be made. The user directs the proof checker to expand the definition of a particular function, and then the
expansion is done automatically. Other examples of transformations provided by the proof checker are
instantiating a quantified variable, substituting equals for equal and using a particular lemma. A formula is
proved to be a theorem by finding a sequence of transformations that transform the formula into true. This
sequence constitutes a formal, mathematical proof.

A complete transcript of the interactive proof of extend_separation is given in Appendix A. The key
steps in the proof are to expand the definition of the separated relation and the passed and rejected
functions with the expand command. The theorem command shows the state of the formula at various
intermediate stages of transformation. The null_separation lemma is proved in a similar way.

Notice that both of these lemmas about message separation can be proved at this rather high level of
abstraction without detailed knowledge of the specific format for incoming messages and without knowing the
specific formatting details for the outputs y and z. These details are encapsulated in the functions
msg_stream and image respectively. These definitions (which would need to be provided in subsequent
refinement stages) might be quite simple or very complex. In either case, however, detailed definitions of these
functions are not required at this stage. The use of abstraction in this way is what makes it possible to construct
concise, intellectually manageable formal proofs about large complex specifications. The next section
illustrates how similar techniques can be used in proofs about an implementation.
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Finally, it is noted that the null_stream lemma can not be proved at this stage of refinement. However,
it is required in the subsequent implementation proof, and therefore, it serves as a constraint on the refinement
of the definition of msg_stream.

4.4 Implementation Refinement

An implementation of procedure separator that satisfies the preceding specifications is shown in Figure
6. The implementation contains two internal variable objects m and p of types a_msg and integer
respectively. Separator causes its effect on its external variable objects, y and z, first by assigning each of
them the value of the empty sequence of characters. Then, it enters a loop that separates the messages in x one
by one, and for each message the appropriate output is appended to y and z.

Figure 6: Micro Filter Implementation Refinement

-----------------------------------------------------------------------
| |
| $extending |
| scope message_stream_separator = |
| begin |
| |
| procedure separator(x:a_char_seq; var y, z:a_char_seq) = |
| begin |
| exit separated(msg_stream(x), y, z); |
| var m:a_msg; |
| var p:integer := 0; |
| y := null(a_char_seq); |
| z := null(a_char_seq); |
| loop assert separated(msg_stream(x[1..p]), y, z) |
| & p le size(x); |
| if p = size(x) then leave; |
| else get_msg(x, m, p); |
| put_msg(m, y, z); |
| end; |
| end; |
| end; |
| |
| procedure get_msg(x:a_char_seq; var m:a_msg; var p:integer) |
| begin |
| exit msg_stream(x[1..p]) = msg_stream(x[1..p’]) <: m |
| & p > p’ & p le size(x); |
| pending |
| end; |
| |
| procedure put_msg(m:a_msg; var y, z:a_char_seq) = |
| begin |
| exit y = y’ @ image(m).pass & z = z’ @ image(m).reject; |
| pending |
| end; |
| |
| end; |
| |
-----------------------------------------------------------------------
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The desired effect of the loop is described by the assert statement. It states that on each iteration of the
loop, messages in the subsequence x[1..p] have been separated. (The Gypsy notation for element i of
sequence x is x[i], and x[1..p] is the notation for the subsequence x[1],...,x[p].) This assertion is
an internal specification about the operation of the procedure.

The loop operates by successively calling the procedures get_msg and put_msg. Get_msg assigns to m
the next properly formatted message in x and increases p to be the number of the last character in x that has
been examined. Put_msg appends to y and z the appropriate output for the new message m. These properties
of get_msg and put_msg are stated precisely in the specifications that are given for them in Figure 6. (For
the variable p, p’ refers to its value at the time get_msg is started running, and p refers to its value when the
procedure halts. The operator <: appends a single element to the end of a sequence.)

4.5 Implementation Proof

The remaining task for this level of the design of the micro filter is to prove that this abstract
implementation of separator satisfies its specifications (both internal and external). This proof is possible
without any further refinement of the specifications or the implementation. The current form is an instance of
the one shown in Figure 1. Specifications and an implementation for separator have been constructed, but
there is no implementation of either get_msg or put_msg. This level of proof simply assumes that these
procedures eventually will be implemented and proved to satisfy their specifications. However, at this level,
only their external specifications are required.

It is easy to see that the exit specification of separator logically follows from the assert statement in
the loop whenever the procedure leaves the loop. This follows simply from the facts that, when the loop halts,
p=size(x) and that for every Gypsy sequence, x[1..size(x)]=x. It also is easy to see that the assert
statement is true the first time the loop is entered. This is because the local variable p is zero, and y and z are
both equal to the empty sequence. The assertion then follows from the null_stream and
null_separation lemmas because in Gypsy x[1..0] is the empty sequence and the size of a sequence is
always non-negative. Finally, the extend_separation lemma can be used to prove that if the loop
assertion is true on one iteration of the loop, then it also is true on the next. These steps comprise an inductive
proof that the loop assertion is true on every iteration of the loop (even if it never halts). The loop, however,
does halt because, according to the specifications of get_msg, p is an integer that increases on each iteration
and yet never increases beyond the number of characters in the constant x. Therefore, the loop must halt; and
when it does, the exit specification follows from the loop assertion.

The Gypsy verification environment automates all of this argument (except the argument about the loop
halting). From the Gypsy text shown in Figure 6, the verification conditions generator automatically constructs
the formulas shown in Figure 7.

Verification condition separator#2 is the formula that states that the loop assertion is true the first time
the loop is entered. Separator#3 is the one that states that if the assertion is true on one iteration of the loop,
it also is true on the next. Lines labelled Hi are the hypotheses of an implication, and lines labelled Ci are
conclusions. Both the hypotheses and the conclusions are connected implicitly by logical conjunction. The
notation m#1 denotes a value of m upon completing the next cycle of the loop, and similarly for p, y and z.
The notation [seq: m#1] means the sequence consisting of the single element m#1. The verification
condition generator also has constructed a separator#4 for the case when the loop terminates. The
generator, however, does not present this one because the formula has been proved automatically by the
algebraic simplifier. The best way to see the effect of the simplifier is to see what the verification conditions
look like without it. The unsimplified formulas are shown in Figure 8. (There also is a separator#1 which
is so trivial that the generator does not even bother to use the algebraic simplifier.)
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Figure 7: Separator Verification Conditions

-------------------------------------------------------------------
| |
| Verification condition separator#2 |
| separated (msg_stream (null (#seqtype#)), |
| null (a_char_seq), null (a_char_seq)) |
| |
| Verification condition separator#3 |
| H1: msg_stream (x[1..p]) @ [seq: m#1] |
| = msg_stream (x[1..p#1]) |
| H2: y @ image (m#1).pass = y#1 |
| H3: z @ image (m#1).reject = z#1 |
| H4: separated (msg_stream (x[1..p]), y, z) |
| H5: p le size (x) |
| H6: p + 1 le p#1 |
| H7: p#1 le size (x) |
| H8: size (x) ne p |
| --> |
| C1: separated (msg_stream (x[1..p#1]), y#1, z#1) |
| |
-------------------------------------------------------------------

A complete transcript of the interactive proof of separator#3 is given in Appendix A. The key steps are
to do equality substitutions based on hypotheses H1, H2 and H3 with the eqsub command and then use the
extend_separation lemma. Separator#2 is proved by use of the lemmas null_stream and
null_separation.

Once separator has been proved, the process of refinement can be resumed. In general, the refinement
of both specifications and implementations is repeated until all specifications and procedures are implemented
in terms of Gypsy primitives.

It is important to observe that the proof of separator has identified formal specifications for get_msg
and put_msg that are adequate for the subsequent refinements of these procedures. It has been proved that
separator will run according its specification if get_msg and put_msg run according to theirs.
Therefore, these specifications are completely adequate constraints for the subsequent refinements. Some of the
specifications may not be necessary, but they are sufficient to ensure that separator will satisfy its
specification.

5. Trial Applications

The Gypsy environment has been developed to explore the practicality of constructing formal proofs about
software systems that are intended to be used in actual operation. Throughout its development, the environment
has been tested on a number of trial applications. The two major ones are summarized below.
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Figure 8: Unsimplified Verification Conditions

-------------------------------------------------------------------
| |
| Verification condition separator#2 |
| H1: true |
| --> |
| C1: separated (msg_stream (x[1..0]), null (a_char_seq), |
| null (a_char_seq)) |
| C2: 0 le size (x) |
| |
| Verification condition separator#3 |
| H1: separated (msg_stream (x[1..p]), y, z) |
| & p le size (x) |
| H2: not p = size (x) |
| H3: msg_stream (x[1..p#1]) = msg_stream (x[1..p]) <: m#1 |
| & p#1 > p |
| & p#1 le size (x) |
| H4: y#1 = y @ image (m#1).pass |
| & z#1 = z @ image (m#1).reject |
| --> |
| C1: separated (msg_stream (x[1..p#1]), y#1, z#1) |
| C2: p#1 le size (x) |
| |
| Verification condition separator#4 |
| H1: separated (msg_stream (x[1..p]), y, z) |
| & p le size (x) |
| H2: p = size (x) |
| --> |
| C1: true |
| C2: separated (msg_stream (x), y, z) |
| |
-------------------------------------------------------------------

5.1 Message Flow Modulator

The most recent application of Gypsy is the message flow modulator [Good 82b]. The micro filter that has
been specified, designed and proved in the Section 4 is a very close approximation of the modulator. The micro
filter example was chosen deliberately to show how it is possible to construct concise, formal proofs about
much larger software systems. The modulator consists of 556 lines of implementation, and the proofs in the
preceding sections apply, with only very minor alteration, to the design of the modulator. The lower level
details that are unique to the modulator are encapsulated in the msg_stream and image functions.

The message flow modulator is a filter that is applied continuously to a stream of messages flowing from
one computer system to another. As in the micro filter, messages that pass the filter are passed on to their
destination with a very minor modification. Messages that do not are rejected and logged on an audit trail. A
properly formatted message consists of a sequence of at most 7200 ASCII characters that are opened and closed
by a specific sequence.

The filter consists of a list of patterns. Each pattern defines a sequence of letters and digits that may be
interspersed with various arrangements of delimiters. A delimiter is any character other than a letter or digit. If
a message contains any phrase that matches any pattern, it is rejected to the audit trail along with a description
of the offending pattern. Messages that do not contain any occurrence of any pattern are forwarded on to their
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destination.

In essence, the formal specifications of the modulator have the form y=f(x,r) & z=g(x,r) where r is
the list of rejection patterns. The specification describes the exact sequences of characters that must flow out of
the modulator for every possible input sequence. This includes handling both properly and improperly
formatted messages in the input stream, detecting phrases that match the rejection patterns, and formatting both
output sequences. The Gypsy formulation of these specifications is described in further detail in [Good 82b].

The modulator was developed within the Gypsy environment as a converging sequence of prototypes. First,
Gypsy specifications and proofs were constructed for the top levels of the modulator design. This design
covered the basic separation of messages into the two output streams. Then, a sequence of running prototypes
was implemented. The purpose of these prototypes was to help decide what some of the detailed behavior of
the modulator should be. These prototypes were used to investigate various approaches to handling improperly
formed messages and to formatting the audit trail. Specifications for these aspects of the modulator were
decided upon only after considerable experimentation with the prototypes. Next, another sequence of
performance prototypes was built to evaluate the performance of various pattern matching implementations.
Once adequate performance was attained, the Gypsy specifications and proofs were completed for the entire
modulator.

As the final step, the proved modulator was tested in a live, operational environment on test scenarios
developed by an independent, external group. Without any modification, the proved modulator passed all of
these tests on the first attempt.

5.2 Network Interface

The first major application of Gypsy, and the most complex one to date, was a special interface for the
ARPANET. Each ARPANET host has message traffic which needs to be transported over the network
according to the standard Transmission Control Protocol (Version 4.0). The ARPANET, however, is assumed to
be an untrustworthy courier. The special interfaces are to ensure proper message delivery across this potentially
unreliable network.

Figure 9: ARPANET Interface

-------------------------------------------
| ------------------------------------- |
| | | |
| | ARPANET | |
| | | |
| ------------------------------------- |
| | | |
| ----------- ----------- |
| |Interface| o o o |Interface| |
| ----------- ----------- |
--------|-------------------------|--------

| |
Host Host

Normally, each host is connected directly to the network by a bi-directional cable. Each cable is cut and an
interface unit is installed at the cut (Figure 9). This turns the "dumb" cable into a "smart" one. When the smart
cable receives a message from the host, the message is checked to see that it is return-addressed to the sending
host. If it is not, the message is dropped. If it is properly return-addressed, then, in effect, the smart cable seals
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the message in a plain brown envelope that can not be opened by the network, addresses and return-addresses
the envelope and sends it to the ARPANET for delivery. In the other direction, when the cable receives an
envelop from the network, it is opened and its message is examined. If the message shows no sign of damage
and it is addressed to the receiving host, the message is forwarded on to the host; otherwise, it is dropped. Thus,
if the network behaves in some unpredictable way and delivers an envelope to the wrong smart cable, the smart
cable detects this and refuses to deliver the message to its host.

The specification for the interface unit is relatively straightforward. It states that all messages that are sent
into the network must be properly return addressed and packaged and that all messages that are sent out to the
host must be properly unpackaged and addressed. The implementation of the interface, however, is rather
involved because of a variety of fixed, external constraints. One of major constraints was that the interface was
required to use standard ARPANET link and transport protocols. Another was the hardware that was to run the
interface. The interface hardware consisted of two PDP-11 mini-computers packaged into a single box. One
PDP-11 was connected to the host, and the other was connected to the network. The two PDP-11’s could
communicate only in an extremely restricted way, and no other communication between the host and the
network was allowed.

The proved network interface also was developed as a converging sequence of prototypes. First, the formal
specification and proof methods were applied at the highest levels of system design. This involved a
specification and proof about the concurrent host-to-host communication across the entire set of interfaces
(including the ARPANET). Then, the formal specification and proof methods were applied to obtain the
distribution of the interface software onto the two PDP-11 processors of the actual hardware. At this point, a
sequence of running prototypes was implemented to evaluate the performance that could be attained with this
design. The resources required by the initial design were much greater than those that were available, so a new
design was developed and proved, and new performance prototypes were built. When adequate performance
was attained, the formal specification and proof methods were applied through all the remaining levels of the
interface design and implementation. The general approach that was used on the network interface is illustrated
in [Good 82c].

The final result was a formally specified and proved interface, implemented in Gypsy, that operated
successfully across the ARPANET with a companion interface that was implemented independently, in
conventional assembly code, by Bolt, Beranek and Newman, Inc. As in the flow modulator, without any
modification, the proved interface worked properly in every trial run. (A small number of inadequacies in the
statement of the constraints for the message formats and protocols were detected and fixed during the prototype
stage.)

5.3 Economics

These trial applications indicate the kinds of specifications and proofs that are within the capability of the
Gypsy environment. However, if formal specifications and proof are to be used as the basis for a new approach
to software engineering, there also is the matter of economics. Figure 10 shows various measures of the scale
of the trial applications and estimates of the amounts of resources used.

The "lines of Gypsy specifications" and "lines of executable Gypsy" must be interpreted with caution.
These count actual lines of Gypsy text (excluding comments). A line count, however, obviously depends on the
style in which the Gypsy text is written, and therefore, these counts are quite subjective. Also, a line count is
not necessarily a good measure of complexity. In spite of these obvious weaknesses, line counts are one of the
most frequently quoted measures of program size.

"Lines of Gypsy specifications" refers to those lines which are used to express formal specifications. One of
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Figure 10: Resources Used

---------------------------------------------------------------------
| |
| Flow Network |
| Modulator Interface |
| |
| Lines of Gypsy specifications 1,283 3,135 |
| Lines of executable Gypsy 556 4,211 |
| |
| Words of compiled PDP-11 code 3,849 42,271 |
| |
| Verification conditions 304 2,600 |
| Lemmas used 44 90 |
| |
| Automatic proofs 146 2,287 |
| Interactive proofs mechanically checked 198 313 |
| Lemmas assumed without proof 4 2 |
| |
| Work-months 13 52 |
| DEC 2060 CPU-hours 220 444 |
| Page-months of file storage 45,000 84,465 |
| |
| Proved, total Gypsy lines/work-day 6.43 6.42 |
| Proved, total Gypsy lines/CPU-hour 8.36 16.54 |
| |
| Proved, executable Gypsy lines/work-day 1.94 3.68 |
| Proved, executable Gypsy lines/CPU-hour 2.53 9.48 |
| |
---------------------------------------------------------------------

the important differences between the flow modulator and the network interface was the strength of their
specifications. The specifications for the flow modulator were very strong. They completely defined the two
output sequences as functions of the input sequence. The specifications for the network interface, however,
were much weaker. They were stated as relations rather than as functions, and there are some important aspects
of the behavior of the interface that are not covered by these relations. The difference between these two
specification forms is like the difference between y=f(x) and y<x. The first defines exactly what y must be
for every x. The second states only a relatively weak relation between x and y. This is an important difference
to consider in interpreting the numbers in Figure 10.

"Lines of executable Gypsy" refer to lines of Gypsy that actually cause run-time code to be compiled.
These line counts do not, for example, include type declarations. "Words of compiled PDP-11 code" refers to
the number of (16-bit) words of PDP-11 machine code that were produced by the Gypsy compiler. In both
applications, the target machine was a PDP-11/03 with no operating system other than the Gypsy run-time
support package. This package is not included in the word count. The two applications were compiled with
different Gypsy compilers. The flow modulator was compiled through the Gypsy to Bliss translator [Smith 80].
The network interface was compiled with the original Gypsy compiler [Hunter 81].

"Verification conditions" refers to the number of verification conditions constructed by the Gypsy
environment. "Lemmas used" refers to the number of these stated in the Gypsy text. "Automatic proofs" refers
to the number of verification conditions proved fully automatically by the algebraic simplifier. "Interactive
proofs mechanically checked" refers to the number of verification conditions and lemmas that required the use
of the proof checker. In both applications, a small number of lemmas were assumed without proof. The four
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lemmas that were not proved at the time the flow modulator was completed have since been proved. The two
lemmas that were not proved for the network interface were key assumptions about the problem domain.

"Work-months" refers to the total number of (22 day) working months required to complete the application.
These months include the full development of the application, from initial conception through the final testing
of the proved software. This includes all iterations of all levels of specifications, prototypes, and proofs.
Similarly, "CPU-hours" and "page-months" also cover the full development cycle. "Proved, total Gypsy lines"
is computed from "lines of Gypsy specifications" plus "lines of executable Gypsy." This gives a measure of the
total number of Gypsy lines produced per working day. "Proved, executable Gypsy lines" considers just "lines
of executable Gypsy."

6. Conclusion

The Gypsy verification environment is an experimental system that has been developed to explore the
practicality of a new approach to software engineering that is based on rigorous, mathematical foundations.
These foundations, together with the tools provided in the Gypsy environment, make it possible for a software
engineer to construct formal, mathematical proofs about a software system. By appropriate use of abstraction,
the formal proofs can be kept concise and intellectually manageable even though they cover large, complex
systems. These proofs provide an objective, scientific basis for predicting, accurately and precisely, how a
software system will behave when it runs. These proofs can be constructed at all stages of the software life
cycle, from the earliest design stages through system maintenance. Therefore, they also provide the software
engineer a basis for evaluating the effects of early design decisions at the time they are made rather than having
first to build a system that runs. The proofs also provide a basis for predicting the effects of maintenance
modifications.

The results of the first trial applications of the Gypsy environment have been very encouraging. The flow
modulator and the network interface are non-trivial, software systems. They are intended to be used in actual
operation, and their predictability is a genuine, major concern. Although these applications do not approach the
scale and complexity of what normally are regarded as "large" systems, they do support the claim that a formal,
mathematical approach to software engineering is technically viable. The next major research goal seems to be
making this approach economically viable. Although the cost of applying this new technology in the two
applications was much less than what might have been expected (and one always must weigh the cost of
applying this mathematical approach against the cost of an unpredictable software system), there seem to be
many ways in which the amount of resources used to apply the technology can be reduced. If this can be done,
this new technology can become the basis for a new practice of software engineering that can provide dramatic
improvements in the predictability and quality of software systems.

On this euphoric note, it is all too easy to be lulled into a false sense of security because it is tempting to
believe that a formally specified and proved program should be absolutely correct. It should always behave
perfectly and never malfunction. However, there are several reasons why a program that has been proved
within the Gypsy environment may not behave exactly as expected. First, the formal specifications may not
describe exactly the expected behavior of the program. Second, the formal specifications may not describe all
of the aspects of program behavior. Third, invalid lemmas may been assumed without proof. Finally, either the
verification environment, the compiler, the Gypsy run-time support or the hardware might malfunction.

The last four of these potential sources of error, in principle, can be minimized by specifying and proving
the verification environment, the compiler, the run-time support, and to some degree, the hardware. These
would be large complex proofs that are well beyond present capabilities; but, given sufficient cost reductions,
these proofs eventually may well be possible. The first three, however, are subjective and involve some
element of human judgment. Therefore, these potential sources of error can not be eliminated. These sources
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of error are cited not to belittle the potential of a scientific basis for software engineering, but to make clear that
the formal, mathematical approach offers no absolutes. As with any other science, it must be applied in the
context of human judgment.
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Appendix A

Formal Proof of Micro Filter

At the level of abstraction presented in Section 4, the formal proof of the micro filter requires the proof of
just two lemmas, null_separation and extend_separation, and two verification conditions,
separator#2 and separator#3. The following are the complete transcript of these interactive proofs as
done within the Gypsy environment. The input supplied by the human user is underscored.

A.1 Lemma Null_Separation

Entering Prover with lemma null_separation

C1: separated (null (a_msg_seq), null (a_char_seq),
null (a_char_seq))

Prvr -> expand
Unit name -> separated

Prvr -> theorem
C1: passed (null (a_msg_seq)) = null (a_char_seq)
C2: rejected (null (a_msg_seq)) = null (a_char_seq)

Prvr -> expand
Unit name -> passed

Prvr -> expand
Unit name -> rejected

Prvr -> theorem
C1: null (a_char_seq) = null (a_char_seq)
C2: null (a_char_seq) = null (a_char_seq)

Prvr -> qed

7. ANDSPLIT
9. SIMPLIFYC
10. SIMPLIFYC

Theorem proved!.
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A.2 Lemma Extend_Separation

Entering Prover with lemma extend_separation

H1: separated (s, y, z)
->

C1: separated (s @ [seq: m],
y @ image (m).pass,
z @ image (m).reject)

Prvr -> expand
Unit name -> separated

Which ones?
1. in H1: separated (s, y, z)
2. in C1: separated (s @ [seq: m],

y @ image (m).pass,
z @ image (m).reject)

<number-list>, ALL, NONE, PRINT, ^E: all

Prvr -> theorem
H1: passed (s) = y
H2: rejected (s) = z

->
C1: y @ image (m).pass = passed (s @ [seq: m])
C2: z @ image (m).reject = rejected (s @ [seq: m])

Prvr -> expand
Unit name -> passed

Which ones?
1. in H1: passed (s)
2. in C1: passed (s @ [seq: m])

<number-list>, ALL, NONE, PRINT, ^E: 2

Prvr -> expand
Unit name -> rejected

Which ones?
1. in H2: rejected (s)
2. in C2: rejected (s @ [seq: m])

<number-list>, ALL, NONE, PRINT, ^E: 2

Prvr -> theorem
H1: passed (s) = y
H2: rejected (s) = z

->
C1: y @ image (m).pass = passed (s) @ image (m).pass
C2: z @ image (m).reject = rejected (s) @ image (m).reject

Prvr -> qed

9. ANDSPLIT
11. SIMPLIFYC

14. UNIFY
12. SIMPLIFYC

18. UNIFY
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Theorem proved!.



MECHANICAL PROOFS ABOUT COMPUTER PROGRAMS 23

A.3 Verification Condition Separator#2

Entering Prover with verification condition separator#2

C1: separated (msg_stream (null (#seqtype#)), null (a_char_seq),
null (a_char_seq))

Prvr -> use
Unit name -> null_stream

Prvr -> use
Unit name -> null_separation

Prvr -> theorem
H1: separated (null (a_msg_seq), null (a_char_seq),

null (a_char_seq))
H2: msg_stream (null (a_char_seq)) = null (a_msg_seq)

->
C1: separated (msg_stream (null (#seqtype#)), null (a_char_seq),

null (a_char_seq))

Prvr -> eqsub
Hypothesis label -> h2

null (a_msg_seq) := msg_stream (null (a_char_seq))

Prvr -> theorem
H1: separated (msg_stream (null (a_char_seq)), null (a_char_seq),

null (a_char_seq))
->

C1: separated (msg_stream (null (#seqtype#)), null (a_char_seq),
null (a_char_seq))

Prvr -> proceed

7. UNIFY
Theorem proved!.
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A.4 Verification Condition Separator#3

Entering Prover with verification condition separator#3

H1: msg_stream (x[1..p]) @ [seq: m#1] = msg_stream (x[1..p#1])
H2: y @ image (m#1).pass = y#1
H3: z @ image (m#1).reject = z#1
H4: separated (msg_stream (x[1..p]), y, z)
H5: p le size (x)
H6: p + 1 le p#1
H7: p#1 le size (x)
H8: size (x) ne p

->
C1: separated (msg_stream (x[1..p#1]), y#1, z#1)

Prvr -> retain
hypothesis labels, ALL, NONE -> h1 h2 h3 h4

Prvr -> theorem
H1: msg_stream (x[1..p]) @ [seq: m#1] = msg_stream (x[1..p#1])
H2: y @ image (m#1).pass = y#1
H3: z @ image (m#1).reject = z#1
H4: separated (msg_stream (x[1..p]), y, z)

->
C1: separated (msg_stream (x[1..p#1]), y#1, z#1)

Prvr -> eqsub
Hypothesis label -> h1

msg_stream (x[1..p#1]) := msg_stream (x[1..p]) @ [seq: m#1]

Prvr -> theorem
H1: y @ image (m#1).pass = y#1
H2: z @ image (m#1).reject = z#1
H3: separated (msg_stream (x[1..p]), y, z)

->
C1: separated (msg_stream (x[1..p]) @ [seq: m#1], y#1, z#1)

Prvr -> eqsub
Hypothesis label -> h1

y#1 := y @ image (m#1).pass

Prvr -> theorem
H1: z @ image (m#1).reject = z#1
H2: separated (msg_stream (x[1..p]), y, z)

->
C1: separated (msg_stream (x[1..p]) @ [seq: m#1],

y @ image (m#1).pass, z#1)

Prvr -> eqsub
Hypothesis label -> h1

z#1 := z @ image (m#1).reject
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Prvr -> theorem
H1: separated (msg_stream (x[1..p]), y, z)

->
C1: separated (msg_stream (x[1..p]) @ [seq: m#1],

y @ image (m#1).pass,
z @ image (m#1).reject)

Prvr -> use
Unit name -> extend_separation

Prvr -> theorem
H1: separated (s$#2, y$#2, z$#2)

-> separated (s$#2 @ [seq: m$#2],
y$#2 @ image (m$#2).pass,
z$#2 @ image (m$#2).reject)

H2: separated (msg_stream (x[1..p]), y, z)
->

C1: separated (msg_stream (x[1..p]) @ [seq: m#1],
y @ image (m#1).pass,
z @ image (m#1).reject)

Prvr -> proceed

11. BACKCHAIN
12. UNIFY

13. ANDSPLIT
13. UNIFY

Theorem proved!.
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